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Abstract. In this paper, we provide an approach to data-driven control for artifi-

cial pancreas system by learning neural network models of human insulin-glucose

physiology from available patient data and using a mixed integer optimization

approach to control blood glucose levels in real-time using the inferred models.

First, our approach learns neural networks to predict the future blood glucose

values from given data on insulin infusion and their resulting effects on blood

glucose levels. However, to provide guarantees on the resulting model, we use

quantile regression to fit multiple neural networks that predict upper and lower

quantiles of the future blood glucose levels, in addition to the mean.

Using the inferred set of neural networks, we formulate a model-predictive con-

trol scheme that adjusts both basal and bolus insulin delivery to ensure that the

risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile

models while the mean prediction stays as close as possible to the desired target.

We discuss how this scheme can handle disturbances from large unannounced

meals as well as infeasibilities that result from situations where the uncertain-

ties in future glucose predictions are too high. We experimentally evaluate this

approach on data obtained from a set of 17 patients over a course of 40 nights

per patient. Furthermore, we also test our approach using neural networks ob-

tained from virtual patient models available through the UVA-Padova simulator

for type-1 diabetes.

1 Introduction

This paper investigates the use of neural networks as data-driven models of insulin glu-

cose regulation in the human body. Furthermore, we show how the networks can be

used as part of a robust control design that can compute optimal insulin infusion for

patients with type-1 diabetes based on the predictive models. We test our approach in

instances of large disturbances such as unannounced meals consisting of over 130g of

carbs. Such a scheme is commonly known as model-predictive control (MPC)[8]. Neu-

ral networks have emerged as a versatile data-driven approach to modeling numerous

processes, including biological processes. They can model nonlinear functions, and be

trained from data using the well-known backpropagation algorithm[22]. This has led

to numerous machine learning algorithms that use neural networks for regression and

classification tasks.

We first consider the process of learning neural network models from data. To do

so, we used two different data sets: a synthetic dataset using a well-known differen-

tial equation model of human insulin regulation was simulated under randomly varying



conditions [15,17]; and a clinical dataset consisting of 17 patients with 40 nights per

patient [34]. Both datasets report blood glucose (BG) levels at 5 minute intervals along

with the insulin infusions provided. From these datasets, we infer a feedforward neural

network that employs 180 minutes of BG and insulin values to predict the likely BG

value 30 minutes into the future. However, a key challenge lies in capturing the uncer-

tainty inherent in this value. To do so, we infer multiple networks including a network

that is trained to predict the mean BG level, as well as networks that are trained to

predict upper and lower quantiles using quantile regression [30]. The upper (lower) α

quantile network attempts to predict a value that will lie above (below) the actual value

with α probability.

Next, we use the prediction models to calculate the optimal insulin infusion for a

patient given the initial history of BG values to (a) maintain a target BG level well

inside the normal range of [70, 180]mg/dL; (b) ensure that the risk of hypoglycemia

(BG ≤ 70mg/dL) and high BG levels (BG ≥ 210mg/dL) are bounded. The latter

objectives are achieved by enforcing the constraint that the lower and upper quantile

networks must predict values that are within the range.

We evaluate our approach by exploring an optimal network structure to improve

prediction accuracy. Our approach yields relatively small networks with 16 neurons in

two hidden layers that can predict the BG levels with a mean prediction error of about

7mg/dL. This error is comparable to the measurement error of the sensor used in the

prediction.

Next, we evaluate the resulting control scheme on two different types of experi-

ments. In one experiment, a neural network based predictive model is learned offline

against a popular ODE-based simulation model proposed by Dalla-Man et al [17,15].

In another set of experiments, two different neural network models are trained against

the same data set using stochastic gradient descent. One of the models is used as the

predictive model and the other is used as a stand-in for a real patient. In both instances,

we simulate the controllers under varying initial conditions and disturbances of sensor

drop out and unannounced meals. The simulation results show an average time in range

of about 73.2% with hypoglycemic incidence rate of only 2% over 2580 simulations.

1.1 Related Work

There has been a recent upsurge of work on data-driven model inference and control

synthesis. Data driven inference techniques are being used in applications ranging from

high level demand-response strategies for cyber-physical energy systems [3], to artifi-

cial pancreas models [37]. In light of this paper, we focus on applications to the lat-

ter. Recent work by Paoletti et al [37], used data-driven methods to learn uncertainty

sets from historic meal and exercise patterns in order to eliminate the need for meal

announcements by the patient. Griva et al. utilized data-driven ARX models to assist

the predictive functional control algorithm used in their artificial pancreas. This model

achieved good prediction for a 30 minute look ahead time within 10 mg/dL [23]. Perez

et al. used past BG levels and a three-layer feed-forward neural network to predict BG

values 30 − 45min out, with accuracy 18 − 27 mg/dL. [39]. In comparison, our mod-

els achieve accuracy of about 7 − 10 mg/dL. Our previous work investigated a data

driven modeling approach using linear ARMAX models for verifying closed-loop PID



controllers [32]. Therein, we focused entirely on the verification of controllers and tun-

ing of gains for specific patients. We employed a nondeterministic model with intervals

around the prediction used to model errors. In contrast, the neural networks used here

are deterministic. However, we use multiple models to predict the mean, and the quan-

tiles.

Model Predictive Control (MPC) is a well known approach to control synthesis [8].

Numerous MPC schemes for insulin infusion control have been constructed based on

ODE-based models (see survey by Bequette [4]). Multiple groups have developed non-

linear MPC strategies using neural networks. Piche et al [40] combined a linear dy-

namic model with a steady-state model learned on historic data to develop MPC so-

lutions. Other have used neural networks to replace either, or both, the controller and

plant models in an MPC framework with varied success rates [41,7,47]. To our knowl-

edge this work is the first to propose MPC using multiple neural networks to construct

non-deterministic models, and compute optimal infusion schedules using integer linear

optimization solvers.

Another contribution of this work is to use multiple predictive models for the mean

and the quantiles of the distribution. In this regard, our work is related to that of Cameron

et al, who also use multiple models [9]. However, their models are instantiations of

multiple possible meal scenarios weighted by their likelihoods during the prediction

horizon. In contrast, we use models for the mean and the upper/lower quantiles, which

are able to handle large disturbances from unannounced meals.

Lastly, it’s worth mentioning that, although neural networks are popular as data-

driven models, their applications to safety-critical domains has been limited by the lack

of guarantees. Recent work has sought to provide such guarantees by solving verifica-

tion problems posed on neural networks [19,33,29].

2 Preliminaries

In this section, we present some preliminary notions involving the “artificial pancreas”

that controls insulin delivery for patients with type-1 diabetes, and discuss various mod-

eling approaches, including physiological models. Next, we discuss preliminary con-

cepts about neural network and the encoding of neural networks into mixed integer

optimization problems.

2.1 Type-1 Diabetes and Artificial Pancreas

Patients with type-1 diabetes depend on external insulin delivery to maintain their blood

glucose (BG) levels within a euglycemic range of [70, 180] mg/dL. BG levels below

70mg/dL lead to hypoglycemia which is characterized by a loss of consciousness,

coma or even death [11]. On the other side, levels above 180mg/dL constitute hyper-

glycemia which leads to longer term damage to the eyes, kidneys, peripheral nerves and

the heart. Levels above 300mg/dL are associated with a condition called ketoacidosis,

where, due to insufficient insulin, the body breaks down fat for energy resulting in a

buildup of ketones. To treat type-1 diabetes, patients receive artificial insulin externally



either through multiple daily injections, or insulin pumps [11]. The latter allows a con-

tinuous basal infusion at a pre-programmed rate through the day along with large insulin

boluses delivered to counteract the effect of meals. For the most part, the management

of BG levels is performed manually by the patient. This requires careful counting of

meal carbohydrates, and almost constant vigilance on the part of the patient, as rela-

tively minor errors result in poor BG control at best, and life threatening hypoglycemia

or ketacidosis, in the worst cases.

Artificial pancreas (AP) systems look to ease the burden of BG control by automat-

ing the delivery of insulin through an insulin pump, using continuous glucose sensors

to periodically measure the BG levels and employing a control algorithm to decide on

how much insulin to deliver [14,28,44]. A variety of strategies have been proposed for

the artificial pancreas, ranging from relatively simple pump shutoff controllers [35],

PID-based algorithms [42,48,43], rule-based systems [2,36], predictive controllers that

use a model to forecast future BG trends in the patient against planned future insulin

infusions [9,26,4]. Furthermore, the control is classified as either fully closed loop,

wherein the user is (in theory) not needed to announce impending meals or exercise

versus hybrid closed loops which continue to rely on users to bolus for meals or an-

nounce impending exercise [31]. Numerous control algorithms are currently in various

stages of clinical trials. The Medtronic 670G device, based on a PID control algorithm,

was recently approved by the US FDA and is available as a commercial product [25,21].

A key consideration for many AP devices involves adapting the insulin delivery to

the personal characteristics of the patient. Patients display a wide range of variability

in their response to insulin [37]. This variability is crudely summarized into numbers

such as the daily insulin requirement and the insulin to carbohydrate ratio, in order to

calculate insulin requirements for basal insulin and meal boluses. However, in order to

achieve safe and effective control, it is important to model many additional aspects of

the patient’s insulin-glucose response [32]. Thus, the challenge involves how to build

mathematical models that capture important aspects of a specific patient’s physiology.

2.2 Mathematical Models

Mathematical models of insulin-glucose response have a long history. Bergman pro-

posed a minimal ODE-based model of insulin-glucose physiology [12,6]. His model

involves three state-variables, captures the nonlinear insulin-glucose response. At the

same time, it does not model aspects such as endogenous glucose production by the

liver, insulin dependent vs. insulin independent uptake of glucose by various tissues

in the body, and the effect of renal clearance of glucose that happens during hyper-

glycemia. Finally, the model assumes direct glucose and insulin inputs into the blood

stream.

More detailed physiological models have been proposed, notably by Hovorka et

al. [27] and Dalla Man et al [18,15]. These models address many of the missing aspects

of the original Bergman model. A recently updated version of the Dalla Man model

accounts for the effect of fasting and exercise through the counter-regulatory hormone

glucagon [16]. The Dalla-Man ODE model has been approved by the US FDA as a

replacement for animal trials in testing control algorithms at the pre-clinical stage [38].



A key critique of ODE-based physiological models involves the estimation of model

parameters corresponding to the available patient data. The Dalla-Man model involves

upwards of 40 patient parameters which need to be identified to model a particular indi-

vidual. Some of these parameters may in fact be time varying. Furthermore, the model

involves state variables that cannot be directly measured without intrusive radiological

tracer studies. For most patients, available data consists mainly of noisy measurements

of BG levels coupled with insulin infusion logs.

2.3 Neural Network

Neural networks are a connectionist, data-driven model that represents functions from

a domain of inputs to outputs. There are two types of neural networks: (a) feedforward

neural networks which do not have internal memory; and (b) recurrent neural networks

that have internal memory in the form of units called long short term memory (LSTM).

In this paper, we focus exclusively on feedforward neural network models, but briefly

discuss recurrent neural networks since they form a viable modeling option that was not

chosen for this paper.

A feedforward networkN consists of n inputs, m outputs, and k hidden layers with

N1, . . . , Nk neurons in each of the hidden layers. The jth neuron in the ith hidden layer

is denoted Ni,j for 1 ≤ i ≤ k and 1 ≤ j ≤ Ni. The inputs are connected to the first

hidden layer, each hidden layer i is connected to the subsequent hidden layer i + 1 for

1 ≤ i ≤ k − 1, and finally, the last hidden layer is connected to the output layer. The

connections have associated weights denoted by matrices Wi and biases denoted by a

vector bi.

Definition 1 (Feedforward Neural Networks). Formally, a feedforward network is a

tuple
〈

n,m, k, (Ni)
k
i=1, (Wi,bi)

k
i=0

〉

, modeling a function FN : Rn 7→ R
m wherein

the weights of the connection from input layer to the first hidden layer are given by

(W0,b0) with W0 ∈ R
N0,n,b0 ∈ R

N0 , the connection from layer i to i + 1 is given

by (Wi,bi) for 1 ≤ i ≤ k − 1, where Wi ∈ R
Ni+1,Ni and bi ∈ R

Ni+1 , and finally

(Wk,bk) are the weights connecting the last hidden layer to the output layer.

Table 1. Commonly used activa-

tion functions.

Name σ(z)
RELU max(z, 0)
SIGMOID

1
1+e−z

TANH tanh(z)
PRELU max(αz, z)
SOFTPLUS log(1 + exp(z))

Each neuron Ni,j is associated with a nonlinear

activation function σi,j : R 7→ R. Table 1 lists the

commonly used activation function, with the ReLU

being the most popular, recently. For convenience, we

assume that all neurons have the same activation func-

tion σ. We lift σ to vectors of variables as σ(x) :






σ(x1)
...

σ(xn)






. A neural network N computes a function

FN : Rn 7→ R
m. Given a feedforward neural network, the function computed is defined

as a composition of two types of functions (a) hidden layer functions Fi : σ(Wixi+bi),
and (b) the output function Fout : Wkxk + bk. The overall function computed by the

network is FN (x) : Fout(Fk−1(· · · (F0(x)) · · · )).



Feedforward vs. Recurrent: Feedforward networks are useful in modeling functions

from input to output. They are used in problems such as learning a function from data

through regression and classifying between different categories. As such, they do not

have internal states. Modeling sequences involves recurrent neural networks that aug-

ment feedforward networks with “feedback connections” through a series of memory

units which can remember values between successive time steps. In analogy with dig-

ital circuits, feedforward networks are analogous to combinational circuits made from

logic gates such as and/or/not, whereas recurrent networks correspond to sequential cir-

cuits that involve feedback using memory elements such as flip-flops. In this paper, we

focus entirely on data-driven models using feedforward neural networks. We justify our

choice on the basis of three factors: (a) the networks are easier to model and we en-

code some of the existing knowledge in terms of the structure of the network to avoid

overfitting; (b) the networks are easier to train and (c) finally, we provide simpler ap-

proaches to reason about these networks. On the other hand, using a recurrent network

can simplify some of the choices made in our model.

2.4 Encoding Networks into Constraints

A core primitive in this paper is to solve control problems involving neural networks as

predictive models. We recall how the function computed by a network can be systemati-

cally modeled as a set of mixed integer linear constraints [45]. This linear programming

(LP) encoding is standard, and has been presented in details elsewhere [19,33].

Let N be a network with n inputs, k − 1 hidden layers, and a single output. We

restrict our discussion in this section to ReLU activation units. Let x ∈ R
n be the input

to a neural network, represented as n (LP) variables, {F1, F2, . . . , Fk−1} represent the

outputs of the hidden layers, and y ∈ R be the (LP) variables representing the output of

the network. Let, {W0 . . .Wk}, and {b0 . . .bk}, be the weights and biases, as described

in Definition 1.

We introduce binary (LP) variable vectors {v1, . . . ,vk−1}. Such that for each vari-

able in the vector, vi[j] ∈ {0, 1}. The binary variables are introduced in order to model

the piecewise linear nature of ReLU units. That is, if vi[j] is 1, the ReLU is off, and on

otherwise.

At a hidden layer i, the network constraints require that Fi+1 = ReLU(WiFi+bi).
We use the binary (LP) variables vi+1 to encode the piecewise linear behavior of ReLU

units.

Ci+1 :















Fi+1 ≥WiFi + bi,

Fi+1 ≤WiFi + bi +Mvi+1,

Fi+1 ≥ 0,

Fi+1 ≤ M(1− vi+1)

Where M is a “large enough” constant. In practice, the number M often decides the

performance of the solver, and it is possible to derive tight estimates of M using interval

analysis on the network [33]. Thus we can combine these constraints, to form the encod-

ing of the entire network: C : C0∧ . . . ∧Ck+1. Next, we can use additional constraints

on the inputs and outputs of the neural network N , to find feasible assignments.



3 Data Driven Models with Neural Networks

In order to predict future blood glucose values for each patient, we used the various

patient datasets to train neural-network models. In this section, we describe the data

sources, followed by a description of our prediction models. Next, we will describe and

justify our choice of the neural network structure. Finally, we will describe the training

process and the results obtained.

3.1 Data Sources

The paper examines two different sources of data: (a) synthetic data obtained from

running the UVA-Padova simulation model over a randomly selected set of meals and

outputting the insulin input and BG values encountered over time; and (b) clinical trial

data for a pump shutoff control algorithm recorded “longitudinal data” for n = 17
patients with 40 nightly sessions for each patient.

Synthetic Data Collection: The synthetic data collection is based on the Dalla-Man

model [15,17,18], a 10 state variable nonlinear ODE model with upwards of 40 patient

parameters. We selected 6 parameter sets describing virtual adult patients to perform

our simulation. Each daytime simulation run for a patient involved two randomly sized

simulated meals with the first meal having up to [20, 35] grams of carbohydrates (CHO)

and the second meal involving [35, 135] grams of CHO. The insulin infusion was con-

trolled by the “multi-basal” controller reported in our previous work [13]. The output

data involved the BG values reported in 5 minute intervals, and the insulin infusion also

reported in 5 minute intervals. Overall, the collected data consists of 6 different patients

with 500 simulation runs per patient.

PSO3 Clinical Trial Data: The patient data was obtained from a previously held home

trial of a predictive pump shutoff algorithm [10]. This pump is not an artificial pancreas

and does not adjust insulin delivery rates, however, it does shut off delivery when BG

is predicted (via Kalman filter) to drop below a threshold. We use a total of 17 patients

with 40 nights of data per patient [34]. The collected data reports the BG levels col-

lected every 5 minutes and the insulin infusion logs reporting basal insulin and boluses

delivered. The logs were converted into insulin infusions at 5 minute intervals (units de-

livered/5min). For each nightly session, we discarded the first three hours worth of data

to mitigate the effect of an unknown meal size and insulin bolus delivered just before

the start of the session. This provided roughly 8 hours of glucose and insulin data for

each session. Entire nightly sessions were discarded from consideration for two main

reasons: (a) the patient suffered from a hypoglycemia and were treated using “rescue”

carbohydrates; and (b) the sensor readings were incomplete due to dropouts or data

recording issues.

3.2 Prediction Model Structure

We now describe the structure of the prediction model. There are two aspects to the

prediction model. Let t be the current time in minutes. Our goal is to predict the glucose

value at a future “lookahead” time t + T , using the history of past N glucose values



with a “past” step size of h: G(t), G(t− h), . . . , G(t−Nh) and past M insulin values

u(t), u(t−h), . . . , u(t−Mh). The nature of the dataset, described previously, restricts

the value of h = 5 minutes.

To decide on the value of the future lookahead, we note some known physiological

details of insulin action: (a) insulin infused subcutaneously has a delay of 20 − 30
minutes before it reaches the patient’s blood stream and starts action; (b) insulin has an

action profile with peak action time of about 75 minutes and persists in the blood stream

up to 4 hours [20]. Therefore, to model the effect of the insulin administered at time t,

we set the future lookahead T = 30 minutes. Our attempts to infer models for shorter

lookahead such as T = 5 minutes leads to accurate but ultimately useless models that

predict G(t + 5) = G(t). Next, we set Mh = 180 minutes to account for the entire

past history of insulin which may affect the value at G(t+ 30). Finally, to simplify the

structure of the prediction model, we set N = M .

Let
←−
GN (t) denote the column vector consisting of the N past glucose values (G(t), G(t−

h), . . . , G(t−Nh)) and likewise←−u N (t) denote the past N insulin values (u(t), . . . , u(t−
Nh)). Thus, the desired prediction model is a distribution-valued function:

G(t+ T ) ∼ F (
←−
GN (t),←−u N (t)) .

wherein F (
←−
GN (t),←−u N (t)) is a random variable that models the distribution of the

predicted values. Unfortunately, modeling and reasoning about distributions is a hard

problem. Therefore, we use a simpler approach using finitely many models that predict

the mean and quantiles of the distribution.

The mean predictive model captures the expected value at time t+ T :

E(G(t+ T )) = Fm(
←−
GN (t),←−u N (t)) .

Likewise, we wish to formulate α upper quantile models Fα(
←−
GN (t),←−u N (t)) such that

P

{

G(t+ T ) ≥ Fα(
←−
GN (t),←−u N (t))

}

≤ (1− α) .

For instance, for α = 0.95, we train an upper quantile model that predicts a level F 0.95

which can be exceeded with probability at most 0.05. Similarly, an α lower quantile

model Fα(
←−
GN (t),←−u N (t)) seeks a prediction such that

P

{

G(t+ T ) ≤ Fα(
←−
GN (t),←−u N (t))

}

≤ (1− α) .

In other words, F 0.95 model predicts a value such that the actual value will lie below the

predicted value with probability at most 0.05. The overall distribution is represented by

a mean predictive model Fm and a set of upper quantile models Fα and lower quantile

models F β for selected values of α and β.

Neural Network Structure:

Figure 1(a) shows the overall structure of the neural network used in our model.

Our neural networks involve two layers with the input layer partitioned into two parts:

glucose inputs and insulin inputs. Next, based on existing ODE models [5,27,15] we
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←−
GN

←−u N

· · · · · ·

· · ·

# neurons in layer 1

3 6 8 20 200
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y
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2 3 1152 - - - -

4 - 623 8558 4518 -

5 - 5.57 6.82 5.98 -

6 - 10.34 3.37 2.15 -

8 - 6.20 1.34 15.85 -

10 - 3.21 7.45 5.99 -

20 - - - - 323.98

(a) (b)

Fig. 1. (a) Neural network structure, (b) Mean training error (mg/dL) with varying combinations

of neurons in each layer. Values presented are averaged over three trials for real patient ID: PSO3-

001-0001.

partition the first hidden layer into two parts meant to model insulin transport and glu-

cose transport. Finally, we add a joint hidden layer to model the insulin action on glu-

cose. Besides this, note that our model does not have internal states. Rather, we assume

that this state is well captured by the history of glucose and insulin inputs of the model.

The number of neurons in the hidden layer was chosen by training a series of networks

with different hidden layer sizes and choosing the best performing model, as will be

described subsequently in this section.

Loss Functions: Our goal is to train neural network predictive models Fm for the mean

prediction and the quantile models for lower quantiles F β and upper quantiles Fα, re-

spectively. These are achieved using the same regression process that chooses unknown

network weightsW : {(W0,b0), (W1,b1), (W2,b2)} that minimize a loss function L

over the prediction error e(t;W) : G(t + T ) − FW(
←−
GN ,←−u N ) at time t, wherein the

values of G(t), u(t) are obtained from the training data:W : argmin
∑

t L(e(t;W)). It

is well known that the mean of a distribution is obtained as the minimizer of a quadratic

loss function over the samples Lm(e) : ||e||22. Likewise, the quantiles are also obtained

by minimizing loss functions corresponding to α upper quantiles [30].

Lα(e) = max(−αe, (1− α)e) .

Similarly, the loss function for the β lower quantile minimizes the upper quantile

loss function for 1 − β: L1−β . It must be remarked that precise quantile regression re-

quires large amounts of data since we are fitting a function at the tails of the distributions

we wish to model, and consequently the process can be sensitive to outliers.

Training: The network weights are initialized at random and trained using off the shelf

backpropagation algorithms implemented in the popular package TensorFlow [1]. The

training process supports user specified loss functions as long as they are differentiable.

To this end, a differentiable approximation of Lα was obtained by replacing the max
with a softmax operator: softmax(x, y) = ex

ex+ey
. The training is performed by first

partitioning the given data into different training and test sets. Next, gradient descent

is performed over randomly selected batches of data points. Once a model is trained,

its accuracy is evaluated over the test data. The training is performed by selecting loss







Fm

Fα

Fm

Fα

Fm

Fα

· · ·

· · · · · · · · · · · ·

u(t−Nh) u(t) u(t+ h) u(t+Kh) G(t−Nh) G(t) G(t+ T ) G(t+Kh)

Gu(t+ T ) Gu(t+Kh)

Fig. 4. Schematic illustration of the recursive unfolding setup for the model predictive control

optimization problem. The red dots represent unknown variables, whereas the blue dots represent

known data at optimization time. The unknown mean glucose values Gm(t+h), . . . , G(t+Kh)
are constrained to be the mean predictions through the network Fm. Similarly, the unknown upper

bounds Gu(t+h), . . . , Gu(t+Kh) are obtained using the network Fα. The lower bounds Gl(t)
are not shown in this figure.

3. The values of the insulin infused must remain within limits: ul ≤ u(s) ≤ uh, s ∈
{t+ h, . . . , t+ (K − 1)h}.

4. The total insulin delivered must be within limit:
∑t+(K−1)h

s=t−Nh u(s) ≤ Utot.

5. The glucose level G(s) must be predicted according to the network Fm: G(t +

jh) = Fm(
←−
G(t+ jh− T ),←−u (t+ jh− T )), s ∈ {t+ h, . . . , t+ (K − 1)h}.

6. The upper limit Gu(s) must be as predicted using the network Fα: Gu(t + jh) =

Fα(
←−
G(t+ jh− T ),←−u (t+ jh− T )), s ∈ {t+ h, . . . , t+ (K − 1)h}.

7. The lower limit Gl(s) must be predicted using the network Fβ : Gl(t + jh) =

Fβ(
←−
G(t+ jh− T ),←−u (t+ jh− T )), s ∈ {t+ h, . . . , t+ (K − 1)h}.

The overall MILP formulation combines the constraints noted above with the ob-

jective that minimizes the deviation at time t+Kh from a desired target value: |G(t+
Kh) − G∗|. Note that constraints involve equalities written as z = F (x, y), wherein

F is the function computed by a neural network. These constraints are converted into

MILP constraints through the introduction of fresh binary variables, as described in Sec-

tion 2.4. The objective involves minimizing the absolute value of a linear expression,

and can be converted to a linear objective in a standard manner [45].

Filling-in Prediction Gap: Since our approach uses history up to time t to predict

the value at t + T , there is a potential “gap” in our predictions for BG values in the

set {t + h, . . . , t + T − h} that require historical values past what was assumed to

be available. There are two solutions: (a) Rather than use historical values spanning

[t − Nh, t], we will extend our history to [t − Nh − T, t] and thus eliminate the gap;

(b) Alternatively, we will assume unknown values for the “missing” history in the range



Table 2. Summary of results for clinical trial and synthetic datasets. Legend: #P - number of

patients, # Tr - number of random trials per patient, T.H - total time horizon for the simulations,

Avg. Hyper - Average number of trials resulting in hyper glycemia, Avg. Hypo - Average number

of trials resulting in hypoglycemia, TiR - Percent time in the range, BG ∈ [70, 180]mg/dL.

Dataset #P # Tr T.H. Avg. Hyper Avg. Hypo Avg. TiR

Clin. Trial 15 100 7.5h 15.3 2.7 68.9

Synthetic 6 180 8.5h 1.6 3.6 92.95

[t − Nh − T, t − (N + 1)h] that lie inside a admissible range [0, 500]. Furthermore,

we can constrain the increase/decrease of successive BG values to a physiologically

feasible range.

Deploying the Controller: There are two ways of deploying the control scheme: (a)

compute a “single shot” insulin infusion schedule over the time horizon [t+h, t+Kh]
and deliver this to the patient; or (b) use some part of the computed insulin infusion

schedule and update the schedule in real-time as new BG measurements are obtained.

The latter option is called receding horizon control, and is preferred since it can act

against errors between the predictive model and the actual patient. In practice, we use

a receding horizon scheme that computes a control schedule for the entire time horizon

[t + h, t + Kh]. The first insulin value of the resulting solution is delivered to the

patient. At time t+ h, a new BG measurement is obtained, and the entire computation

is restarted over the new horizon [t+ 2h, t+ (K + 1)h].

Handling Infeasibilities: The optimization problem can be infeasible whenever the

quantile models are inconsistent w.r.t the mean model prediction. This can happen for

two key reasons: (a) the uncertainty in the future BG values is too large for us to guar-

antee that both the lower and upper bounds will be safe; (b) the networks are “extrap-

olating” on inputs that lie far from the training data. Situation (a) can be addressed by

dropping the constraints from the problem, starting with the constraint on the upper

bound network and hyperglycemia limit. If this does not resolve the infeasibility, we

drop the mean value in range constraint. Failing this, we conclude that the predictions

are potentially inconsistent with each other. Thus, we revert to a safe insulin infusion,

often given by the patient’s basal insulin or complete shutoff of insulin.

5 Evaluation

Table 2 summarizes the overall results obtained across the two datasets. For each patient

in a given dataset, we inferred predictive models, as described in Section 3. Addition-

ally, for the clinical trial patients, we learned an additional neural network by repeating

the backpropagation process. For the synthetic patient, the ODE model was used as the

patient model in our simulation. The randomized nature of this process provides us with

different results and accuracies for each run. For each patient, we simulated numerous

trials with different randomly chosen initial conditions. For all trials, the value of G∗

was taken to be 140 mg/dL with the tolerance limit D of 40 mg/dL.







same dataset. This can arguably lead to better results than what is possible in reality.

However, the inverse is also likely: by using a learned model as the plant, additional

noise is introduced, and this could have contributed to instabilities observed in model

prediction for the clinical data set. Hence, future work includes improvement to plant

model construction.

The Dalla Man model is considered state-of-the-art. Nevertheless, it is hard to fit

real patient data to it, due to the numerous parameters involved in the model [46].

Future work will consider alternative network topologies, or varied the history length

needed. The use of recurrent neural network is yet another direction for future work.

One of the limitations of our approach is the lack of support for meal detection or meal

announcements for clinical data, though our controllers were able to bolus for unan-

nounced meals in the case of synthetic data. We will attempt to integrate our work with

related and complementary approaches for this problem proposed by Paoletti et al [37],

as well as obtain a patient data set which includes daytime data.

7 Conclusions

Thus, we have presented a data-driven approach that infers neural networks for the

mean, upper and lower quantiles for predicting future BG levels from data. We for-

mulate a robust control scheme for calculating safe and optimal infusions on this data

in the presence of unannounced meals, and sensor errors. Finally, we have evaluated

our performance over a variety of datasets, initial histories, patient models, and meal

sizes. Our approach shows promising results. However, we also noted instabilities in

the model that must be addressed as part of future work.
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